Relationship between intestinal functional activity and intestinal microflora in patients with metabolic disorders
pdf

Keywords

intestine, metabolic and pathophysiological disorders, microflora, motor-evacuation function, Lactile, Spark.

How to Cite

Kolesnikova, O. (2019). Relationship between intestinal functional activity and intestinal microflora in patients with metabolic disorders. The Practitioner, (1), 41-49. Retrieved from https://plr.com.ua/index.php/journal/article/view/267

Abstract

This review analyzes the relationship between intestinal functional activity and intestinal microflora in patients with metabolic disorders. It is emphasized that gastrointestinal microflora has a significant impact on virtually all the physiological, metabolic, molecular-genetic and behavioral responses. It is also noted that the relationship between dysbiosis and the development of a number of diseases associated with metabolic disorders is considered an indisputable fact. The drugs used to normalize the microflora and motor-evacuation function in functional intestinal disorders associated with metabolic disorders include Lactile and Spark. Elimination of known risk factors in patients with such metabolic disorders is manifested by a decrease in intestinal clinical symptoms and restoration of intestinal endoecology, which creates the preconditions for the formation of a favourable metabolic phenotype.

pdf

References

1. Ames N.J., Ranucci A., Moriyama B., Wallen G.R. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science // Nurs.
Res. — 2017. — Vol. 66 (2). — P. 184-197. Doi: 10.1097/NNR.0000000000000212.
2. Ang Z., Ding J.L. GPR41 and GPR43 in Obesity and Inflammation — Protective or Causative? // Front. Immunol. — 2016. — Vol. 7. — P. 28. Doi: 10.3389/ fimmu.2016.00028.
3. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A. et al. The gut microbiota as an environmental factor that regulates fat storage // PNAS. — 2004. —
Vol. 101 (44). — P. 15718-5723. Doi: org/10.1073/pnas.0407076101.
4. Barbara G., Stanghellini V., Brandi G. et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease // Am.
J. Gastroenterol. — 2005. — 100. — P. 2560-2568.
5. Barbara G., Wang B., Stanghellini V. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome //
Gastroenterology. — 2007. — Vol. 132. — P. 26-37.
6. Caesar R., Fak F., Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism // J. Intern. Med. —
2010. — Vol. 268. — P. 320-328.
7. Cani P.D. Human gut microbiome: hopes, threats and promises // Gut. — 2018. — Vol. 0. — P. 1-10. Doi:10.1136/gutjnl‑2018-316723.
8. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G.R., Delzenne N.M. Selective increases of bifidobacteria in gut microflora improve
high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia // Diabetologia. — 2007. — Vol. 50 (11). — P. 2374-2383.
9. Cho I., Blaser M.J. The Human Microbiome: at the interface of health and disease // Nat. Rev. Genet. — 2012. — Vol. 13 (4). — P. 260-270. Doi: 10.1038/
nrg3182.
10. Di Baise J.K., Zhang H., Crowell M.D., Krajmalnik-Brown R., Decker G.A., Rittmann B.E. Gut microbiota and its possible relationship with obesity // Mayo Clin.
Proc. — 2008. — Vol. 83 (4). — P. 460-9. Doi: 10.4065/83.4.460.
11. Farzi A., Fröhlich E.E., Holzer P. Gut Microbiota and the Neuroendocrine System // Neurotherapeutics. — 2018, Jan. — Vol. 15 (1). — P. 5-22. Doi: 10.1007/
s13311-017-0600-5.
12. Flandroy L., Poutahidis T., Berg G., Clarke G., Dao M.C., Decaestecker E. et al. The impact of human activities and lifestyles on the interlinked microbiota and
health of humansand of ecosystems // Sci. Total. Environ. — 2018, Jun. 15. — Vol. 627. — P. 1018-1038. Doi: 10.1016/j.scitotenv.2018.01.288.
13. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., de Vos W.M., Cani P.D. Cross-talk
between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity // Proc. Natl. Acad. Sci. USA. — 2013. — Vol. 110 (22). — P. 9066-71.
Doi: 10.1073/pnas.1219451110.

Downloads

Download data is not yet available.